
Universal ball mill liner for wet and dry grinding
2025-08-27
Universal Ball Mill Liners for Dry and Wet Grinding: High Manganese Steel for Enhanced Wear Resistance, Suitable for Cement/Ore Grinding Scenarios, Reduced Downtime and Higher Efficiency
Universal Ball Mill Liners for Dry and Wet Grinding: The core product definition, referring to liners designed to work efficiently in both dry grinding (e.g., cement clinker, dry ore) and wet grinding (e.g., ore slurry, wet cement raw materials) environments. Unlike specialized liners that perform well in only one condition, these liners balance wear resistance, corrosion resistance, and impact toughness to adapt to the distinct challenges of dry (abrasive particle wear) and wet (abrasive + corrosive slurry) grinding.
High Manganese Steel for Enhanced Wear Resistance: The liners are typically made of high manganese steel (e.g., ZGMn13) treated with water toughening, which gives them unique wear-resistant properties:
Work hardening effect: In dry grinding, when hard particles (e.g., cement clinker, ore) impact and rub against the liner surface, the austenitic structure of high manganese steel undergoes plastic deformation, rapidly increasing surface hardness from ~200 HB to 500-800 HB, forming a hard wear-resistant layer while maintaining the toughness of the inner matrix.
Impact wear resistance: In wet grinding, the liner not only bears the wear of ore particles but also the impact of grinding media (steel balls). High manganese steel has excellent impact toughness (≥150 J/cm²), which can absorb impact energy without cracking or breaking, far exceeding the performance of brittle materials like high chromium cast iron in high-impact scenarios.
Corrosion mitigation in wet conditions: Although not as corrosion-resistant as stainless steel, the dense surface of water-toughened high manganese steel reduces the penetration of slurry, and its work-hardened layer slows down corrosive wear in wet grinding (e.g., ore slurry containing sulfuric acid or chloride ions).
Suitable for Cement/Ore Grinding Scenarios: These liners are tailored to the specific demands of two key industries:
Cement grinding: In dry grinding of cement clinker (hardness up to Mohs 6-7), the liner withstands high-speed impacts from clinker particles and steel balls, with work hardening ensuring long-term wear resistance; in wet grinding of raw cement slurry, it resists both abrasive wear and mild corrosion from the slurry.
Ore grinding: For dry grinding of ores (e.g., iron ore, copper ore), it handles the abrasive wear of hard gangue minerals; for wet grinding of ore slurries, it balances impact resistance (from large ore chunks) and resistance to slurry erosion.
Reduced Downtime and Higher Efficiency: The performance advantages translate directly to operational benefits:
Extended service life: Compared with ordinary carbon steel liners (service life 1-3 months) or single-condition specialized liners, universal high manganese steel liners last 6-12 months in cement/ore grinding, reducing the frequency of liner replacement.
Less unplanned shutdowns: Their toughness and wear resistance minimize sudden failures (e.g., liner cracking, falling off) that cause unexpected downtime, ensuring continuous operation of the ball mill.
Stable grinding efficiency: The liners maintain their original shape and surface properties for longer, ensuring consistent contact between the grinding media and materials, avoiding efficiency drops caused by uneven liner wear (e.g., reduced grinding fineness, increased energy consumption).
Design optimization for dry and wet universality
To achieve true versatility in both dry and wet conditions, the liners incorporate targeted design features:
Surface structure: Adopts a wave or corrugated design—enhances material lifting and mixing in dry grinding (improving grinding efficiency), while the curved surface reduces slurry adhesion in wet grinding (minimizing corrosive wear from stagnant slurry).
Thickness gradient: Thicker in high-wear areas (e.g., the impact zone near the mill inlet) to withstand intense impact, and appropriately thinner in low-wear areas to reduce weight and energy consumption—balancing durability and operational efficiency.
Edge treatment: Smooth, burr-free edges prevent material accumulation (critical in wet grinding to avoid localized corrosion) and reduce particle entrapment (which causes excessive wear in dry grinding).
Typical application scenarios
Universal high manganese steel ball mill liners are widely used in:
Cement plants: Both dry ball mills (for clinker grinding) and wet ball mills (for raw material slurry preparation), adapting to the shift between dry and wet processes in multi-purpose mills.
Mining industry: Comminution circuits for iron ore, copper ore, and gold ore—handling dry grinding of run-of-mine ore and wet grinding of ore slurries in flotation circuits.
Building materials industry: Grinding of limestone, gypsum, and other minerals, where production may switch between dry (for powder products) and wet (for slurry products) modes.
In these scenarios, the liners' ability to perform reliably in both dry and wet conditions eliminates the need for frequent liner changes when switching grinding modes, significantly improving operational flexibility and reducing overall production costs.
Email: cast@ebcastings.com
Смотрите больше

Heat exchanger titanium tubes
2025-08-27
Titanium Tubes for Heat Exchangers: High Thermal Conductivity + Corrosion Resistance, Enabling Efficient Heat Transfer in Chemical/Pharmaceutical Heat Exchangers
Titanium Tubes for Heat Exchangers: The core product definition, referring to seamless or welded titanium tubes (typically Grade 1, Grade 2 pure titanium, or Grade 5 Ti-6Al-4V alloy) engineered for heat exchanger systems—critical components that transfer heat between two or more fluids (e.g., cooling water and chemical solutions, steam and pharmaceutical slurries). Unlike stainless steel or copper tubes, titanium tubes are optimized for the "high heat transfer efficiency + harsh fluid compatibility" demands of chemical and pharmaceutical industries, where corrosion and thermal performance are equally critical.
High Thermal Conductivity: Titanium exhibits a thermal conductivity of ~21.9 W/(m·K) at 20°C—while lower than copper (~401 W/(m·K)) or aluminum (~237 W/(m·K)), it outperforms corrosion-resistant alternatives like 316L stainless steel (~16.2 W/(m·K)) and nickel alloys (~12–15 W/(m·K)) in harsh environments. For heat exchangers, this translates to:
Efficient heat transfer: Faster thermal energy exchange between fluids, reducing the required tube surface area (and thus heat exchanger size) for the same heat duty. For example, a titanium tube heat exchanger can achieve the same heat transfer rate as a 316L stainless steel unit with 20–30% fewer tubes.
Uniform temperature distribution: Titanium’s moderate but stable thermal conductivity prevents localized hotspots (a risk with low-conductivity materials), which is critical for pharmaceutical processes (e.g., temperature-sensitive drug synthesis) where precise heat control is required.
Corrosion Resistance: Titanium’s defining advantage for chemical/pharmaceutical use lies in its passive oxide film (TiO₂)—a dense, adherent layer formed spontaneously in air or aqueous environments, and self-healing if scratched. This film resists:
Strong chemicals: Acids (sulfuric acid, hydrochloric acid), alkalis (sodium hydroxide), and organic solvents (acetone, ethanol) common in chemical processing, avoiding tube wall erosion or perforation.
High-purity requirements: In pharmaceutical manufacturing, titanium is inert and does not leach metal ions (e.g., iron, nickel from stainless steel) into process fluids—critical for complying with FDA (U.S.) or EMA (EU) standards for drug purity.
Wet/damp conditions: Even in condensing environments (e.g., shell-and-tube heat exchangers with water vapor), titanium avoids rust or pitting, unlike carbon steel or low-grade stainless steel.
Enabling Efficient Heat Transfer in Chemical/Pharmaceutical Heat Exchangers: The synergy of high thermal conductivity and corrosion resistance solves two core pain points of these industries:
Avoiding efficiency loss from corrosion: Corroded tube walls (e.g., rust layers on stainless steel) act as thermal insulators, reducing heat transfer efficiency by 15–40% over time. Titanium’s corrosion resistance maintains a smooth, unobstructed tube surface, ensuring consistent heat transfer performance for 10–20 years (vs. 3–5 years for stainless steel in harsh chemicals).
Supporting aggressive process conditions: Chemical/pharmaceutical heat exchangers often operate with high-temperature (up to 200°C), high-pressure (up to 10 MPa) fluids, or alternating pH levels. Titanium’s mechanical stability (tensile strength ~240–860 MPa, depending on grade) and corrosion resistance under these conditions eliminate unplanned shutdowns for tube replacement, keeping heat transfer systems running efficiently.
Common Titanium Grades for Heat Exchangers
Different titanium grades are selected based on the specific fluid, temperature, and pressure requirements of the application:
Titanium Grade
Key Properties
Advantages
Typical Application Scenarios
Grade 1 (Pure Ti)
Highest ductility, excellent corrosion resistance in mild chemicals
Easy to form (for complex tube shapes), cost-effective for low-pressure systems
Pharmaceutical water cooling, food-grade heat exchangers
Grade 2 (Pure Ti)
Balanced strength (tensile ~345 MPa) and corrosion resistance
Most versatile grade, suitable for most chemical environments
Chemical process cooling (sulfuric acid, ammonia), general-purpose heat exchangers
Grade 5 (Ti-6Al-4V)
High strength (tensile ~860 MPa), good high-temperature stability (>300°C)
Resists pressure and thermal stress, ideal for harsh conditions
High-pressure chemical reactors, high-temperature steam heat exchangers
Additional Advantages for Chemical/Pharmaceutical Industries
Beyond thermal and corrosion performance, titanium tubes offer industry-specific benefits:
Low Maintenance Costs: Their long service life (15–25 years in chemical plants) reduces frequency of tube replacement—saving labor costs and minimizing production downtime (critical for continuous pharmaceutical manufacturing).
Compatibility with Clean-in-Place (CIP) Systems: Titanium withstands the harsh cleaning agents (e.g., nitric acid, sodium hypochlorite) used in pharmaceutical CIP processes, avoiding damage to tube surfaces during sterilization.
Lightweight Design: Titanium’s density (~4.51 g/cm³) is 40% lower than stainless steel (~7.93 g/cm³), reducing the overall weight of large heat exchangers—easing installation and lowering structural support costs in chemical plants.
Typical Application Scenarios
Titanium tubes for heat exchangers are indispensable in:
Chemical Industry: Shell-and-tube heat exchangers for sulfuric acid concentration, hydrochloric acid cooling, or petrochemical refining (resisting hydrocarbon corrosion); plate-and-frame heat exchangers for solvent recovery.
Pharmaceutical Industry: Heat exchangers for drug synthesis (temperature-sensitive reactions), sterile water preparation (avoiding metal ion contamination), and vaccine manufacturing (compliant with biocompatibility standards).
Specialty Processes: Chlor-alkali production (resisting chlorine gas corrosion), pharmaceutical API (Active Pharmaceutical Ingredient) purification, and industrial wastewater treatment (resisting acidic/alkaline effluents).
In these scenarios, titanium tubes directly address the dual demands of efficiency (high thermal conductivity) and reliability (corrosion resistance), making them the preferred material for critical heat transfer systems in chemical and pharmaceutical manufacturing.
Email: cast@ebcastings.com
Смотрите больше

Corrosion-Resistant Battery Nickel Strips
2025-08-26
Corrosion-Resistant Battery Nickel Strips: Surface Passivation Treatment, Oxidation Prevention in Humid Environments, Extending Battery Lifespan
Key Terminology & Core Performance Mechanism
Corrosion-Resistant Battery Nickel Strips: The core product definition, referring to nickel strips (typically high-purity 99.95%+ nickel or nickel alloys) enhanced with anti-corrosion treatments—unlike standard nickel strips, which are prone to oxidation and corrosion in humid or harsh environments. These strips are designed to maintain stable electrical conductivity and structural integrity in battery PACKs (e.g., EV batteries, energy storage systems, portable electronics) exposed to moisture, ensuring long-term reliable operation.
Surface Passivation Treatment: The critical anti-corrosion process that forms a thin, dense, and inert protective film on the nickel strip surface. Unlike temporary coatings (e.g., oil-based protectants), passivation creates a chemical bond with the nickel substrate, resulting in a film that is:
Composition: Primarily composed of nickel oxides (NiO, Ni₂O₃) and trace passivator byproducts (e.g., chromate, phosphate, or silicate, depending on the passivation method). For battery applications (where electrolyte compatibility is critical), chromate-free passivation (e.g., phosphate passivation) is commonly used to avoid toxic substances leaching into the battery.
Thickness: Ultra-thin (20–100 nm), ensuring it does not increase contact resistance or interfere with welding (a key requirement for battery interconnects).
Adhesion: Highly adherent to the nickel surface, resisting peeling or wear during battery assembly (e.g., ultrasonic welding, bending) or long-term use.
Oxidation Prevention in Humid Environments: Humid conditions (e.g., EV undercarriages exposed to rain, portable electronics used in tropical climates, energy storage systems in damp warehouses) accelerate nickel oxidation: standard nickel reacts with moisture and oxygen to form loose, porous nickel oxide (NiO) scales, which increase contact resistance and even flake off to contaminate battery electrolytes. The passivation film addresses this by:
Acting as a barrier between nickel and external moisture/oxygen, blocking the oxidation reaction at the source.
Self-healing (to a limited extent): If the film is slightly scratched (e.g., during assembly), the exposed nickel reacts with residual passivators or ambient oxygen to re-form a thin protective layer, preventing further corrosion.Even in 85% relative humidity (RH) and 85°C (a common battery environmental test standard), passivated nickel strips show 5% for unpassivated strips.
Extending Battery Lifespan: Corrosion of nickel strips is a major cause of premature battery PACK failure, as it leads to two critical issues:
Increased current loss: Oxide scales or corrosion products raise contact resistance between the nickel strip and battery cell tabs, leading to higher Joule heating (energy waste) and reduced charging/discharging efficiency. Over time, this can cut the battery’s usable capacity by 10–20%.
Structural failure: Corrosion weakens the nickel strip’s mechanical strength, causing it to crack or break under vibration (e.g., EV driving) or cyclic loads (charging/discharging). This results in sudden cell disconnection, leading to PACK shutdown or even thermal runaway (if loose corrosion particles cause short circuits).By preventing oxidation and corrosion, passivated nickel strips maintain low contact resistance and structural integrity, extending the battery’s effective lifespan by 20–30% (e.g., from 1,000 charge cycles to 1,200–1,300 cycles for EV batteries).
Common Passivation Methods for Battery Nickel Strips
Different passivation techniques are selected based on battery application requirements (e.g., safety, cost, environmental compliance):
Passivation Method
Key Components
Advantages
Application Scenarios
Phosphate Passivation
Phosphoric acid + oxidizing agents (e.g., nitric acid)
Chromate-free (environmentally friendly), good weldability, compatible with lithium-ion electrolytes
EV batteries, consumer electronics (strict safety standards)
Silicate Passivation
Sodium silicate + organic additives
Excellent moisture resistance, high-temperature stability (>120°C)
High-power batteries (e.g., industrial forklifts, energy storage)
Chromate Passivation
Chromic acid + sulfuric acid
Superior corrosion resistance, low cost
Non-lithium batteries (e.g., lead-acid, nickel-metal hydride) where electrolyte compatibility is less critical
Additional Advantages for Battery PACKs
Beyond corrosion resistance, passivated battery nickel strips offer supplementary benefits:
Improved Weldability: The thin passivation film does not interfere with ultrasonic or laser welding—unlike thick coatings (e.g., electroplating), it vaporizes quickly during welding, ensuring strong, low-resistance bonds between the strip and cell tabs.
Reduced Electrolyte Contamination: Passivation prevents nickel oxide flakes from shedding into the battery electrolyte, which can cause electrolyte degradation (e.g., lithium dendrite formation) and short circuits.
Consistent Electrical Performance: By maintaining a clean, low-resistance surface, passivated strips ensure stable current transfer even in humid conditions, avoiding voltage drops or signal interference in battery management systems (BMS).
Typical Application Scenarios
Corrosion-resistant (passivated) battery nickel strips are critical for:
EV & Hybrid Vehicles: Battery PACKs installed in undercarriages (exposed to rain, road salt, and humidity) or engine bays (high moisture + temperature fluctuations).
Portable Consumer Electronics: Smartphones, tablets, and wearables used in humid environments (e.g., gyms, tropical regions) or prone to accidental water exposure.
Outdoor Energy Storage: Off-grid solar batteries, backup power systems for remote areas (exposed to rain, dew, and high humidity).
Marine & Underwater Equipment: Submersible drones, marine sensors, or boat batteries (resisting saltwater moisture and corrosion).
In these scenarios, the passivated nickel strip’s ability to withstand humidity directly addresses the root cause of battery degradation—oxidation and corrosion—ensuring long-term reliability, safety, and performance.
Смотрите больше

Custom Battery Nickel Strips
2025-08-26
Custom Battery Nickel Strips: On-Demand Processing of Width (2-100mm) & Length, Suitable for Non-Standard Battery Designs
Key Terminology & Core Customization Features
Custom Battery Nickel Strips: The core product definition, referring to nickel strips (typically high-purity grades like 99.95%+ nickel, or nickel-copper alloys for specific conductivity needs) manufactured to match unique customer requirements—unlike standard off-the-shelf nickel strips (fixed widths/lengths for common battery sizes, e.g., 5mm/10mm width for 18650 cell packs). "Customization" here focuses on dimensional flexibility and compatibility with non-standard battery architectures, making it a critical component for specialized energy storage or power systems.
On-Demand Processing of Width (2-100mm): This range covers the vast majority of non-standard battery design needs, addressing scenarios where standard widths are either too narrow (insufficient current-carrying capacity) or too wide (wasting space/weight):
Narrow widths (2-10mm): Ideal for micro-batteries (e.g., medical devices like wearable monitors, small industrial sensors) or dense cell arrangements (e.g., stacked pouch cells in compact electronics), where space is constrained and only low-to-medium current (10-50A) is required.
Medium widths (10-50mm): Suited for mid-sized non-standard packs (e.g., electric scooters with custom cell modules, off-grid solar storage systems with unique voltage configurations), balancing current capacity (50-200A) and installation flexibility.
Wide widths (50-100mm): Designed for high-power non-standard applications (e.g., industrial forklifts, large-scale energy storage containers with custom module layouts), where high current transfer (200-500A) is needed, and the battery’s physical size allows for broader interconnects.The width is precision-cut via processes like slitting (for high-volume orders) or laser cutting (for small batches/ultra-narrow widths), ensuring edge smoothness (no burrs) to avoid damaging battery cell tabs or causing short circuits.
On-Demand Processing of Length: Length customization eliminates waste from trimming standard long rolls (e.g., 100m rolls) to fit small or irregularly sized battery packs, and supports:
Short lengths (5-50mm): For compact cell-to-cell connections (e.g., custom prismatic cell stacks in drones), where minimal material is needed to reduce pack weight.
Long lengths (50mm-2m): For large non-standard modules (e.g., electric bus battery packs with spaced-out cell clusters, backup power systems with vertical cell arrangements), where the nickel strip must span longer distances between cells or modules.Lengths are cut to ±0.1mm tolerance, ensuring consistency during automated or manual assembly—critical for maintaining uniform contact pressure between the strip and cell terminals.
Suitable for Non-Standard Battery Designs: Non-standard batteries (e.g., custom-shaped EV batteries for niche vehicle models, high-voltage battery packs for industrial robots, flexible batteries for wearable tech) often deviate from standard form factors (cylindrical, prismatic, pouch) in terms of cell arrangement (stacked, staggered, radial), voltage/current requirements, or physical space constraints. Custom nickel strips adapt to these deviations by:
Matching the pack’s unique current demands (via width adjustment: wider strips for higher current).
Fitting irregular assembly spaces (via length/shape tweaks—e.g., notched strips for avoiding pack components like sensors or cooling tubes).
Complying with specialized manufacturing processes (e.g., pre-bent strips for curved battery enclosures in electric motorcycles).
Customization Processes & Quality Control
To ensure the custom nickel strips meet battery safety and performance standards, the manufacturing process includes targeted steps:
Material Selection: Based on the battery’s needs—e.g., 99.95% high-purity nickel for minimal current loss (EVs/ESS), nickel-copper (Ni-Cu 70/30) alloy for improved mechanical flexibility (wearable batteries).
Precision Cutting:
Slitting: For high-volume width customization (2-100mm), using carbide slitting blades to achieve clean edges and tight width tolerance (±0.05mm).
Laser Cutting: For ultra-narrow widths (
Смотрите больше

Ударная плита из высокомаганцевой стали
2025-08-25
Сталь с высоким содержанием марганцаУдарная пластина: ZGMn13 упрощенная водой, устойчивая к ударам и износостойкая, удваивает срок службы дробления твердой породы
Взрывные пластины из стали с высоким содержанием марганца (представленыZGMn13), благодаря уникальным свойствам, присущим процессу гидрозатверждения, стали основными износостойкими компонентами оборудования, используемого для дробления твердой породы (например, гранита, базальта и железной руды).Их влияние иустойчивость к износуНиже приведен подробный анализ свойств материала, принципов процесса, преимуществ производительности и применения:
Я.Основной фонд:"Связывание производительности" высокомангановой стали ZGMn13 и гидрозакаливаниеZGMn13 представляет собой типичную аустенитную высокомангановую сталь с содержанием углерода 1,0%-1,4% и содержанием марганца 11%-14%.Это высокое соотношение углерода и марганца является предпосылкой для его устойчивости к ударам и износу, но для активации этих свойств требуется гидрозакаливание (обработка раствором с последующим охлаждением водой).
Принцип процесса гидравлического отверждения:ZGMn13отливки нагреваются до 1050-1100°C и удерживаются в течение достаточного периода времени (обычно 2-4 часа), чтобы карбиды (такие как Fe3C и Mn3C) полностью растворились в матрице аустенита,образующие однородную однофазную аустенитовую структуруЗатем сталь быстро охлаждается водой (водяное охлаждение), чтобы предотвратить осаждение карбидов во время процесса охлаждения.
Изменения эффективности после лечения:НеобработанныеZGMn13: карбиды распределены в сетчатом или блочном рисунке на границах зерна, делая материал хрупким (твердость около 200 HB), легко ломается при ударе,и демонстрируют плохую износостойкость.
После гашения водой:Получается чистая аустенитовая структура, с уменьшенной твердостью до 180-220 HB и значительно повышенной прочностью (прочность при ударе αk ≥ 150 J/cm2).Он также обладает свойствами "укрепления" - основным механизмом его сопротивления ударам и износу..
II. Ключевые преимущества производительности: двойная ядро "Ударная стойкость + износостойкость" для дробления твердой породыВо время процесса дробления твердых пород ударные пластины должны выдерживать высокочастотные, высокоэнергетические удары по камням (силы удара достигают тысяч ньютонов),а также скольжение трения и сжимания из скалыВодозащищенный ZGMn13 точно соответствует следующим условиям:Устойчивость к ударам: "Твердость для устойчивости к ударам, предотвращение переломов"Однофазная аустенитовая структура, отвержденная водой, чрезвычайно прочная, поглощает энергию, генерируемую ударами твердой породы, не трескаясь или не ломаясь.По сравнению с обычными износостойкими сталями (например, NM450), прочность ZGMn13 в 3-5 раз выше, что позволяет ему выдерживать "моментальные нагрузки от удара" от дробления твердой породы, предотвращая преждевременный отказ ударной пластины,такие как обрушение краев и трещины. Сопротивление износу: "Усиление работы + динамическая стойкость износа"
Сопротивление износу ZGMn13 не зависит от его первоначальной высокой твердости, а скорее от "эффекта отверждения работы под ударной нагрузкой".Когда твердая порода воздействует или сжимает поверхность ударной плиты, матрица аустенита подвергается пластической деформации, а атомы углерода агрегируются при вывихях, образуя мартензит и карбиды.Твердость поверхности быстро увеличивается с 200HB до 500-800HB, создавая жесткий, износостойкий поверхностный слой.После того, как поверхностный слой изнашивается, незакаленный аустенитный матриц под ним остается открытым, опять закачиваясь во время последующих ударов, достигая "динамической износостойкости"."Это "закаливание с использованием" свойство идеально адаптируется к "удар-ношение цикла твердых камней дробления", избегая недостатков обычной стали: фиксированной твердости и необратимого износа.
При дроблении твердых пород "чисто твердые и хрупкие материалы" (например, чугун с высоким содержанием хрома) имеют высокую начальную твердость, но слабую устойчивость к ударам и склонны к трещинам."Чисто прочные материалы" (например, обычная углеродистая сталь) устойчивы к ударам, но имеют низкую твердость и склонны к износу и отказу.ZGMn13, с помощью обработки с водяным отверждением, достигается сочетание "жесткой матрицы + динамически отвержденного слоя поверхности", достигая как устойчивости к ударам, так и износу,Решать противоречие между "жестким, но хрупким""Тяжелый, но мягкий".
III. Стоимость применения: основная логика "двойного срока службы" в дроблении твердой породы
В оборудовании для дробления твердых пород (таких как ударные дробилки и дробилки с молотком) "двойная продолжительность службы" водозащищенной ударной пластины ZGMn13 не является преувеличением;он демонстрирует преимущества в эксплуатации на основе фактических условий эксплуатации;:
Сокращение преждевременных сбоев и продление эффективного срока службы
Обычная износостойкая сталь (например, Q355 со сварным слоем износа) подвержена переломам из-за недостаточной устойчивости к ударам при ударах твердых пород (обычно период отказа составляет 1-2 месяца).Ударная пластина ZGMn13Кроме того, эффект закаливания уменьшает процесс износа, что приводит к эффективному сроку службы в 3-6 месяцев, что фактически удваивает его срок службы.
Снижение затрат на эксплуатацию и обслуживание и повышение эффективности оборудования.Уменьшенная частота замены: удвоение срока службы означает на 50% меньше замены ударных пластинок, сокращение времени простоя при демонтаже и сборке (каждая замена требует от 4 до 8 часов),и повышение эффективности оборудования.Снижение потребления запасных частей: отсутствие необходимости часто покупать и накапливать запасные части, что снижает затраты на запасы и закупки.Подходит для дробления с высокой нагрузкой: поддерживает стабильную производительность даже при дроблении базальта и гранита высокой твердости (твердость Моха > 7),предотвращение проблем, таких как нестандартный размер частиц измельченного продукта и перебои в производстве, вызванные неисправностью компонента.
IV. Осторожность при использовании: обеспечить полную производительностьДолжен соответствовать "условиям ударной нагрузки"Рабочая закаленность ZGMn13 требует достаточной энергии удара (обычно требует ударного напряжения ≥ 200 МПа).эффект отверждения недостаточен, а износостойкость значительно снижена;В этих случаях высокохромовое чугун более экономично. Избегайте использования в низкотемпературных условиях.Водоукрепленная сталь ZGMn13 восприимчива к "остенитовой низкотемпературной ломкости" ниже -40°C, что приводит к резкому снижению прочности при ударе.не подходит для наружного дробления оборудования в холодных регионах.. (Должна использоваться высокомангановая сталь с улучшенной низкотемпературной прочностью, например ZGMn13Cr2)
Контролируйте размер частиц измельченного материала.Хотя он обладает сильной устойчивостью к ударам,следует избегать непосредственного столкновения с чрезмерно крупными твердыми породами (например, валунами, которые больше, чем отверстие питания), чтобы предотвратить локальную чрезмерную деформацию или повреждение матрицы., что повлияет на общую продолжительность жизни.Подводя итог, водозащищенная стальная ударная плита с высоким содержанием марганца ZGMn13, благодаря сочетанию "водозащищения для активизации прочности + усиления работы для повышения износостойкости," точно отвечает двойным требованиям "стойкости удара" и "стойкости износа" в дроблении твердой породы.Он является основным и предпочтительным компонентом для дробления твердых пород в таких отраслях, как горнодобывающая промышленность, строительные материалы и металлургия.
Электронная почта: cast@ebcastings.com
Смотрите больше